OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Sebbins Pond, Bedford,** the program coordinators have made the following observations and recommendations.

Thank you for your continued hard work sampling the pond this year! Your monitoring group sampled the deep spot **three** times this year and has done so for many years! As you know, conducting multiple sampling events each year enables DES to more accurately detect water quality changes. Keep up the good work!

The New Hampshire Department of Environmental Services (DES), in conjunction with the U.S. Environmental Protection Agency (EPA) and the environmental consulting firm AECOM, conducted a Total Maximum Daily Load (TMDL) for total phosphorus for your pond. The TMDL refers to the pollutant reductions a waterbody needs to meet New Hampshire's water quality standards. Sebbins Pond was listed on the 2008 impaired waters [303(d)] list because elevated algal growth impaired the primary contact recreation (swimming) use. Phosphorus is the nutrient responsible for algal growth and is the pollutant to be reduced to control algal growth. DES is required by the Federal Clean Water Act (CWA), Section 303(d), to report every two years to the EPA on all waters not meeting state water quality standards.

The TMDL conducted at your pond identified an in-lake target phosphorus value that, when met, should result in no additional primary contact recreation impairments due to algal growth. A phosphorus budget was constructed, phosphorus sources identified and phosphorus reductions allocated to each of the sources to meet the target value. An implementation plan provides recommendations on watershed remediation activities to reduce phosphorus inputs to the pond.

The draft TMDL will be provided to your pond association, town, and watershed stakeholders for review and will also be available on the DES website at

www.des.nh.gov/organization/divisions/water/wmb/tmdl/index.htm. There will be a period for public review and comment, anticipated for Winter/Spring 2010. Phosphorus load reductions can only occur with the knowledge, participation and action of watershed residents,

businesses and stakeholders. If you are interested in learning more about the TMDL Program please contact Peg Foss, TMDL Coordinator, at Margaret.foss@des.nh.gov or 603-271-5448.

We encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from May through September. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watcher kit, volunteers look for any species that are suspicious. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers immediately send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plant infestations, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers website at www.des.nh.gov/organization/divisions/water/wmb/exoticspecies/weed _watcher.htm.

FIGURE INTERPRETATION

CHLOROPHYLL-A

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the pond has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *increased* from **June** to **July**, and then *decreased* from **July** to **August**. Chlorophyll concentrations in July and August suggest an algal bloom occurred in the pond. Typically, chlorophyll concentrations above **15.00 mg/m³** are indicative of an algal bloom.

The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *much greater than* the state and similar lake medians. For more information on the similar lake median, refer to Appendix F.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual chlorophyll-a concentration has **not significantly changed** since monitoring began. Specifically, the mean annual chlorophyll-a concentration has **fluctuated between approximately 5.19 and 56.73 mg/m³**, but has **not continually increased or decreased** since **1987**. Please refer to Appendix E for a detailed statistical analysis explanation and data print-out.

While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

TRANSPARENCY

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the pond has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the non-viewscope inlake transparency **decreased** from **June** to **July**, and then **increased** from **July** to **August**.

It is important to note that as the chlorophyll concentration *increased* from **June** to **July**, the transparency *decreased*, and as the chlorophyll *decreased* from **July** to **August**, the transparency *increased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases, and vice-versa.

The historical data (the bottom graph) show that the **2009** mean non-viewscope transparency is *slightly less than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

The current year data (the top graph) show that the viewscope in-lake transparency was *approximately equal to* the non-viewscope transparency on the **June** sampling event. The transparency was *not* measured with the viewscope on the **July** or **August** sampling events. A comparison of transparency readings taken with and without the use of a viewscope shows that the viewscope typically increases the depth to which the Secchi disk can be seen into the lake, particularly on sunny and windy days. We recommend that your group measure Secchi disk transparency with and without the viewscope on each sampling event.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual non-viewscope transparency has **not significantly changed** since monitoring began. Specifically, the mean transparency has **fluctuated between approximately 1.50** and 3.70 meters, but has **not continually increased or decreased** since **1987**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

TOTAL PHOSPHORUS

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *decreased gradually* from **June** to **August**.

The **elevated** epilimnetic phosphorus concentration measured on the **June** sampling event may be a result of phosphorus-enriched stormwater runoff that flowed into the surface layer of the pond. Weather records show that approximately **2.0 inches** of rain fall was measured **24-72 hours** prior to sampling.

The historical data show that the **2009** mean epilimnetic phosphorus concentration is *greater than* the state and similar lake medians. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *decreased* from **June** to **July**, and then *increased* from **July** to **August**.

The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *greater than* the state and similar lake medians. Please refer to Appendix F for more information about the similar lake median.

Overall, the statistical analysis of the historical data shows that the epilimnetic (upper layer) phosphorus concentration has **not significantly changed** since monitoring began. Specifically, the mean annual epilimnetic phosphorus concentration has **fluctuated between approximately 8 and 27 ug/L** since **1987**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out.

Overall, the statistical analysis of the historical data shows that the hypolimnetic (lower layer) phosphorus concentration has **significantly decreased** (meaning **improved**) on average by **approximately 4.571 percent** per year during the sampling period **1987** to **2009**. Please refer to Appendix E for the statistical analysis explanation and data print-out. We hope this improving trend continues!

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the pond. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

The dominant phytoplankton and/or cyanobacteria observed in the **June** sample were **Anabaena** (Cyanobacteria), **Ceratium** (Dinoflagellate), and **Fragilaria** (Diatom).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown algae populations are typical in New Hampshire's less productive lakes and ponds.

> Table 2: Cyanobacteria

A large amount of the cyanobacterium *Anabaena* was observed in the June plankton sample. *This cyanobacteria*, *if present in large*

amounts, can be toxic to livestock, wildlife, pets, and humans. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding cyanobacteria.

Cyanobacteria can reach nuisance levels when phosphorus loading from the watershed to surface waters is increased and favorable environmental conditions occur, such as a period of sunny, warm weather.

The presence of cyanobacteria serves as a reminder of the pond's delicate balance. Watershed residents should continue to act proactively to reduce nutrient loading to the pond by eliminating lawn fertilizer use, keeping the pond shoreline natural, re-vegetating cleared areas within the watershed, and properly maintaining septic systems and roads.

In addition, residents should also observe the pond in September and October during the time of fall turnover (lake mixing) to document any algal blooms that may occur. Cyanobacteria have the ability to regulate their depth in the water column by producing or releasing gas from vesicles. However, occasionally lake mixing can affect their buoyancy and cause them to rise to the surface in high concentrations. Wind and currents tend to "pile" cyanobacteria into scums that accumulate in one section of the pond. If a fall bloom occurs, please collect a sample in any clean jar or bottle and contact the VLAP Coordinator.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **6.16** in the hypolimnion to **6.80** in the epilimnion, which means that the water is *slightly acidic*.

It is important to point out that the hypolimnetic (lower layer) pH was *lower (more acidic)* than in the epilimnion (upper layer). This

increase in acidity near the pond bottom is likely due to the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **14.9 mg/L**, which is **much greater than** the state median. In addition, this indicates that the pond has a **low vulnerability** to acidic inputs.

> Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **215.3 uMhos/cm**, which is *much greater than* the state median.

The conductivity has *increased* in the pond and tributaries since monitoring began. In addition, the in-lake conductivity is *much greater than* the state median. Typically, increasing conductivity indicates the influence of pollutant sources associated with human

activities. These sources include failed or marginally functioning septic systems, agricultural runoff, stormwater runoff, and road runoff which contains road salt during the spring snow-melt. New development in the watershed can alter runoff patterns and expose new soil and bedrock areas, which could also contribute to increasing conductivity. In addition, natural sources, such as iron and manganese deposits in bedrock, can influence conductivity.

We recommend that your monitoring group conduct stream surveys and rain event sampling along tributaries with *elevated* conductivity to help identify the sources.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the pond. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

Therefore, we recommend that the **epilimnion** (upper layer) and **tributaries** be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The total phosphorus concentration was *elevated* (25, 39 and 33 ug/L) in **Back Pond Inlet** this year. This station has had a history of *elevated* and *fluctuating* phosphorus concentrations. It appears that a wetland area drains to the Back Pond. It is possible that watershed wetland systems released phosphorus-enriched water into the tributaries and ultimately into the lake.

However, we recommend that your monitoring group conduct a stream survey and rain event sampling along this tributary, if possible, so that we can determine what may be causing the elevated concentrations.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2009. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of sufficient amounts of
dissolved oxygen in the water column is vital to fish and amphibians
and bottom-dwelling organisms. Please refer to the "Chemical
Monitoring Parameters" section of this report for a more detailed
explanation.

The dissolved oxygen concentration was greater than **100 percent** saturation at **two** meters at the deep spot on the **June** sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of sunlight penetration into the water column was approximately **2.75** meters on this sampling event, as shown by the Secchi disk transparency depth, we suspect that an abundance of algae, and more specifically cyanobacteria, in the epilimnion caused the oxygen super-saturation.

During this year, and many past sampling years, the pond has experienced a lower dissolved oxygen concentration and a higher total phosphorus concentration in the hypolimnion (lower layer) than in the epilimnion (upper layer). These data suggest that the **process of** *internal phosphorus loading* is occurring in the pond. When the hypolimnetic dissolved oxygen concentration is depleted to less than 1 mg/L, as it was on the annual biologist visit this year and on many previous annual visits, the phosphorus that is normally bound up with metals in the sediment may be re-released into the water column. Since an internal source of phosphorus in the pond may be present, it is even more important that watershed residents act proactively to minimize phosphorus loading from the watershed.

Low hypolimnetic oxygen levels are a sign of the pond's **aging** and

declining health. This year the DES biologist conducted the dissolved oxygen profile in **June**. We recommend that the annual biologist visit for the **2010** sampling year be scheduled during **July** so that we can determine if oxygen is depleted in the hypolimnion *later* in the sampling year.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The turbidity in the **Back Pond Inlet** samples was *slightly elevated* (2.22 and 3.68 NTUs) on the **June and July** sampling events, which suggests that the stream bottom may have been disturbed while sampling or that erosion is occurring in this area of the watershed. When the stream bottom is disturbed, sediment, which typically contains attached phosphorus, is released into the water column. When collecting tributary samples please sample where there's sufficient stream flow and depth to collect a "clean" sample free from debris and sediment.

If you suspect erosion in the watershed, we recommend conducting a stream survey to identify sediment erosion. We also recommend that your monitoring group conduct rain event sampling along this tributary. This additional sampling may allow us to determine what is causing the *elevated* levels of turbidity.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

Bacteria sampling was not conducted this year. If residents are concerned about sources of bacteria such as failing septic systems,

animal waste, or waterfowl waste, it is best to conduct *E. coli* testing when the water table is high, when beach use is heavy, or immediately after rain events.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

Chloride sampling was **not** conducted during **2009**.

Table 14: Current Year Biological and Chemical Raw Data Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf.

Best Management Practices for Well Drilling Operations, DES fact sheet WD-DWGB-21-4, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/dwgb/documents/dwgb-21-4.pdf.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, DES fact sheet WMB-10, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/docu ments/wmb-10.pdf.

Erosion Control for Construction in the Protected Shoreland Buffer Zone, DES fact sheet WD-SP-1, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-1.pdf

How to Identify Cyanobacteria, DES Pamphlets & Brochures, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/cyano_id_flyer.pdf

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, DES fact sheet WD-BB-9, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/bb/docume nts/bb-9.pdf.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-17, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-17.pdf.

NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20a.pdf

NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20b.pdf

NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975

or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20c.pdf

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, DES fact sheet WD-SP-2, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-2.pdf.

Road Salt and Water Quality, DES fact sheet WD-WMB-4, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-4.pdf.

Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, DES fact sheet WD-BB-4, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/factsheets/bb/docu ments/bb-4.pdf.